
 1

BEEPA
CONTENTS:
Section 1: General and Planning Information
Section 2: Components and Material Required
Section 3: Mechanical Design

Section 4: Assembling BEEPA

Section 5: Electrical Testing
Section 6: Programming the Picaxe
Section 7: Investigation
Section 8: Theory

DESCRIPTION
The BEEPA project provides an introduction to

microcontrollers, programming and electronics.

BEEPA can be programmed to light three LEDs,

produce sound from a piezo transducer,

respond to pushbutton presses and respond to
the light level.

SECTION 1: GENERAL AND PLANNING INFORMATION

1. DESIGN CONSIDERATIONS

1.1 GENERAL

Before construction, plan and lay out all the components using a suitable computer

program or on a sheet of paper. Look at BEEPA as a complete unit, and not just as

separate parts. Use our drawings as a starting point for your design.

1.2 ITEMS FOR INVESTIGATION

The tasks to complete the project include assembling and testing the circuit board and

performing a range of investigations.

Investigations contained in this Teaching Unit include the following:

 Flashing LED

 Flickering LED
 LED chaser

 Three LED blinker
 Binary counter
 Traffic lights

 Heads or tails

 Light to flash rate

 Light activated flashing
LED

 Light meter
 Shadow detector
 LED Dimmer

 Cricket
 Music using play command

 Music using tune command

 Shower or egg timer
 Tone using pwmout

command
 Theremin
 Courtesy light

Additional areas of investigation could include:

 Investigate the operational requirements of a typical toy or domestic appliance,
such as an alarm clock or a microwave oven, that use a microcontroller (embedded

control system).
 Student's own project, such as a game or a "cyberpet".

 Investigate adding other output devices, such as lamps, motors and solenoids.

SCORPIO TECHNOLOGY VICTORIA PTY. LTD.
A.B.N. 34 056 661 422

17 Inverell Ave., Mt. Waverley, Vic. 3149 Tel: (03) 9802 9913 Fax: (03) 9887 8158

Revised: 8 February 2016 www.scorpiotechnology.com.au sales@scorpiotechnology.com.au

Issued: 17 February 2013 www.scorpiotechnology.com.au
sales@scorpiotechnology.com.au

http://www.scorpiotechnology.com.au/
http://www.scorpiotechnology.com.au/

 2

SECTION 2: COMPONENTS & MATERIAL REQUIRED

2.1 COMPONENTS SUPPLIED

The following components are supplied in the kit:

2.1 ADDITIONAL REQUIREMENTS

The following items are required and are available from Scorpio Technology:

 Battery – AA, 4 required (BATTAA)

 AXE027 - PICAXE USB Download Cable, which can be ordered from us. The
"AXE027 USB Cable Driver" can be downloaded for free from www.picaxe.com.

The following material is to be supplied by the student / designer:

 Electric hook-up wire – Multi-strand in assorted colours
 Material for the platform (PVC or acrylic sheet, plywood, etc.)

 Assorted screws, nuts and washers
 The PICAXE editor, which can be downloaded for free from www.picaxe.com. The

PICAXE programming editor software requires a PC running Windows XP or later.

2.2 TOOLS REQUIRED

The following tools are required:

 Assorted hand tools

 Soldering equipment and solder

http://www.picaxe.co.uk/
http://www.picaxe.co.uk/

 3

SECTION 3: MECHANICAL DESIGN

 Determine size and
material for the

baseboard. We used
75x130mm plastic
sheet (acrylic or PVC).

 Determine a suitable
position and

attachment for the PCB
assembly. We used
nuts and bolts.

 Determine a suitable
position and

attachment for the
battery holder. We have
used hot-melt glue,

double-sided tape and
hook-and-loop tape

("Velcro" or
equivalent).

 Determine a suitable position and attachment for the power switch, piezo

transducer, piezo switch and pushbutton switch. We attached the switches using
hot-melt glue.

Determine a suitable method to prevent the screws underneath the baseboard
scratching the surface on which it is placed. We used self-adhesive feet.

SECTION 4: ASSEMBLING BEEPA

4.1 PRINTED CIRCUIT BOARD ASSEMBLY

PCB COMPONENT TERMINOLOGY

 Solder the components to the PCB in

the following order: resistors,
capacitors, LDR, IC socket (notched

end indicates leg 1), stereo socket
and LEDs (flat is negative).

 Trim the component leads as

required.
 Do not insert the IC into its socket

yet. This will be inserted just prior to
electrical testing.

CAUTION: Take care in orienting the IC socket and LEDs. Unsoldering and replacing
damaged or wrongly positioned components will waste time. Do not overheat the

PCB and components.

 4

4.2 WIRING AND MECHANICAL ASSEMBLY

WIRING DIAGRAM

 Solder the red (positive) wire from the

battery holder to the power switch. Solder
the black (negative) wire from the battery
holder to "0v" on the PCB. Solder a length of

red wire between the switch to "V+".
 Solder the wires from the piezo transducer

and switch to the PCB. Connect red to "+"
and black to "-".

 Solder two length of wire between the

pushbutton switch and "Switch" connections.
 Attach the PCB assembly, battery holder,

piezo transducer, switches and pushbutton.

SECTION 5: ELECTRICAL TESTING

 Inspect soldering for short circuits and poor "wetting" of component leads or pads.
 Insert four 1.5Volt AA batteries into the battery holder. Move the power switch to

"on". Check that the LED (L4) illuminates (this shows that power is available and is
the correct polarity).

 If the LED does not illuminate:
 Check that the batteries are properly inserted in the battery holder.
 Check that the battery voltage is above 5.5 volts. (If low, replace the batteries.)

 Check that battery voltage is present between legs 1 and 8 on IC1. Leg 1 should
be positive.

 Check the wiring against the wiring diagram.
 Check the values of the resistors against the circuit diagram.
 Check that the LED is the right way around.

 Check that the LED is working by using a 220 Ohm resistor and 6Volt (battery)
power.

 Move the power switch to "off". Check the orientation of the IC - the end with leg 1
is identified with a notch or dimple at one end. Line up the legs of the IC with its IC
socket holes and press down firmly. Do not use the letters/numbers on the IC to

identify leg numbers.

NOTE: For wiring, use wires of different colours to assist in tracing wires during

fault finding. When soldering wires, strip a short piece of insulation from the end of
the wire, twist the strands and "tin" them with solder.

NOTE: It may be necessary to bend the IC legs slightly to line them up with the

socket holes.

CAUTION: ICs will be damaged if they are installed in the wrong direction or if
power supply (battery) connections are reversed.

 5

SECTION 6: PROGRAMMING THE PICAXE

6.1 INSTALL PICAXE EDITOR

 Start up and log into your PC. (Some PCs require that you log in as the
‘Administrator’ to install software. See your systems administrator if you do not

have administrative rights.)
 From the website www.picaxe.com, select "Free Software" > "Picaxe Programming

Editor" > "Prog. Editor Installer". The installer will be downloaded to your
computer.

 Select "Free Software" > "AXE027 USB Cable Driver". Download "Driver
Installation Instructions". Download "Windows USB Driver (self extracting
preinstaller format)".

 Install the PICAXE editor.
 Install the AXE027 USB Download Cable driver. Follow the installation instructions.

 Insert the AXE-027 USB Download Cable into an available USB port.

6.2 START PICAXE EDITOR

 Click Start>Programs>Revolution Education>Programming Editor to start the
software.

 If the Options screen does not automatically appear, click the View>Options menu.

On the 'Mode' tab select PICAXE-08M2 mode. (The PICAXE-08M, with "12F683"
written on it, is also compatible with BEETLE, but instead use the PICAXE-08M

mode.) On the 'Serial Port' tab select the serial COM port allocated to the "AXE-027
PICAXE USB".

 Select Help>About. Check that the software version is 5.5.1 or later.

 The PICAXE programming editor software is ready to use.

6.3 EDIT PROGRAM

 Use the PICAXE programming editor software to create your programs. Save each
version with a different file name.

CONNECTING

DOWNLOAD CABLE

6.4 TRANSFER PROGRAM TO PICAXE

 Move the power switch to "off".
 Connect the AXE-027 USB Download Cable between

your PC and the stereo socket on the PCB.

 Move the power switch to "on".
 Run the PICAXE Programming Editor software and

transfer your program to the PCB. The program will
automatically run once it has been successfully
downloaded.

 If the Programming Editor software gives an error message stating that program
cannot be transferred to the PICAXE:

 Check that the power LED on the PCB is on.
 Try downloading the program again.
 Check that the cable is fully inserted into the stereo socket.

 Check that the AXE027 USB Download Cable is inserted into the correct USB
port.

NOTE: PICAXE editor needs to be installed only once.

IMPORTANT: Always connect the AXE-2027 USB Download Cable to the same USB
port.

 6

 Check that the PICAXE Programming Editor software is set to the appropriate
COM port.

 Carry out the checks listed in the Electrical Testing section.

 Disconnect the AXE027 USB Download Cable from the stereo socket on the PCB.

SECTION 7: INVESTIGATION

For programming language details (help), from the PICAXE "Programming Editor" help

menu, open "PICAXE Manual 2 - BASIC Commands".

After checking that each program operates, you are encouraged to change the
program to investigate the result. In some cases, a valid range for a parameter is

specified.

The Picaxe-08M2 will not "break" if you do something "wrong" in a program. If you

make a mistake, (a) the Programming Editor will give you an error message or (b) the
Picaxe-08M2 will do something unexpected. In either case, check your typing for
mistakes and think through what you have done and modify your program

accordingly.

7.1 FLASHING LED

The red LED is switched on (high) for 0.5 seconds (500 milliseconds) and off (low) for
0.5 seconds.

main:

 high 0

 pause 500

 low 0

 pause 500

 goto main

 Change the program to flash the yellow LED (output 2).
 Change the program to flash the green LED (output 4).

 Change the flashing speed (valid range for pause is 0 to 65535 milliseconds.).

7.2 FLICKERING LED

The internal random number generator is used to create an erratically flashing LED.

main:

 random w0

 high 0

 pause b1

 low 0

 random w0

 pause b1

 goto main

 Is the same sequence used each time the Picaxe is turned on? Why? (Refer to
help.)

 What is the relation between the variables w0 and b1? (Refer to help.)

7.3 LED CHASER

An LED is illuminated for 0.5 seconds, then the next one is illuminated for 0.5
seconds, etc.

 7

main:

 high 0

 pause 500

 low 0

 high 2

 pause 500

 low 2

 high 4

 pause 500

 low 4

 goto main

 Change the LED chaser so that it runs at twice the speed.
 Reverse the direction of the sequence.

7.4 THREE LED BLINKER

The three LEDs are blinked at different rates.

'Note 16 x 15 x 14 = 3360

main:

 for w0 = 1 to 3360

 b2 = w0 % 16

 if b2 <> 0 then skip1

 high 0

skip1:

 b2 = w0 % 15

 if b2 <> 0 then skip2

 high 2

skip2:

 b2 = w0 % 14

 if b2 <> 0 then skip3

 high 4

skip3:

 pause 10

 low 0

 low 2

 low 4

 next

 goto main

 What is the function of the following lines of code?
main:

skip1:

skip3:

skip2:

 Why is the number 3360 used in the program?
 Why is the modulus (%) calculation used? What other symbol can be used? (Refer

to help.)

7.5 BINARY COUNTER

The LEDs are used to display binary numbers. The weighting for the LEDs are: red=1,
yellow=2, green = 4. The range of binary numbers that can be displayed is from 0
(000) to 8 (111).

 8

 b0 = 0

main:

 b1 = b0 and 1 'check 1st bit

 low 0

 if b1 = 0 then skipred

 high 0

skipred:

 b1 = b0 and 2 'check 2nd bit

 low 2

 if b1 = 0 then skipyellow

 high 2

skipyellow:

 b1 = b0 and 4 'check 3rd bit

 low 4

 if b1 = 0 then skipgreen

 high 4

skipgreen:

 pause 250

 b0 = b0 +1

 goto main

 Why is the binary number system important in digital computers?
 Why do the numbers 255 and 65535 appear frequently in this document? (Hint:

power of 2.)

7.6 TRAFFIC LIGHTS

When the pushbutton is pressed, the yellow LED is displayed, then the green and back

to the red.

 high 0

 low 2

 low 4

main:

 if pin3 = 0 then main

 pause 500

 low 0

 high 2

 pause 500

 low 2

 high 4

 pause 2000

 low 4

 high 0

 goto main

 What is the function of the three program lines before the "main:" label?

 Change the program so that the sequence will not restart if the pushbutton is kept
on.

 9

7.7 HEADS OR TAILS

When the pushbutton is pressed, the red and green LEDs quickly alternate and stop

when the pushbutton is released.

 high 0

 low 4

main:

 if pin3 = 0 then main

flashLED:

 high 0

 low 4

 pause 10

 if pin3 = 0 then main

 low 0

 high 4

 pause 10

 if pin3 = 0 then main

 goto flashLED

 Count the results for 100 pushbutton presses. Did you get an equal number of

heads and tails?

7.8 LIGHT TO FLASH RATE

The LDR light level is stored in variable "b0". The red LED flashes quickly at low light
levels and slows down at higher light levels.

main:

 readadc 1, b0

 high 0

 pause b0

 low 0

 pause b0

 goto main

 Insert the following line after the "readadc" statement to double the flash rate.
 b0 = b0 / 2

 Insert the following line after the "readadc" statement to have a slow flash at low
light levels and fast flash at high light levels.

 b0 = 255 - b0

7.9 LIGHT METER

The LEDs indicate the current light level. Red is high, yellow is medium and green is
low.

 10

main:

 pause 10

 readadc 1, b0

 if b0 > 160 then LEDred

 if b0 > 120 then LEDredyellow

 if b0 > 80 then LEDyellow

 if b0 > 40 then LEDyellowgreen

 goto LEDgreen

LEDred:

 high 0

 low 2

 low 4

 goto main

LEDredyellow:

 high 0

 high 2

 low 4

 goto main

LEDyellow:

 low 0

 high 2

 low 4

 goto main

LEDyellowgreen:

 low 0

 high 2

 high 4

 goto main

LEDgreen:

 low 0

 low 2

 high 4

 goto main

 Change the light level triggers so that they suit your environment.

7.10 LIGHT ACTIVATED FLASHING LED

The program reads the LDR light level (input 1) and stores it in variable "b0". The red
LED flashes if the light level is higher than the value in the program ("if" statement).

main:

 readadc 1, b0

 if b0 < 63 then main

 high 0

 pause 250

 low 0

 pause 250

 goto main

 What is the effect of changing "<" to ">" in the "if" statement?

 11

 Change the trigger point to suit your environment.

7.11 SHADOW DETECTOR

The red LED is flashed for a rapid light increase and the green LED for a rapid light
decrease. The average light reading is maintained using the EWMA (Exponentially
Weighted Moving Average) method.

 readadc 1, b0 'initial average = b0
main:

 pause 10

 low 0

 low 4

 readadc 1, b1 'current value = b1

 w1 = b0 + b1 'temporary variable = w1

 b0 = w1 / 2 'store average in b0

 if b1 > b0 then check_green

 goto check_red

check_green:

 b5 = b1 - b0 'temporary variable = b5

 if b5 < 2 then main

 high 4

 goto main

check_red:

 b5 = b0 - b1 'temporary variable = b5

 if b5 < 2 then main

 high 0

 goto main

 Adjust the sensitivity to light level changes so that they are more suitable for your

environment.
 Is there limitations to light intensity for this program? If so, then how could this be

overcome?

7.12 LED DIMMER

The LEDs are dimmed and then made brighter using PWM (Pulse Width Modulation).
The varying on/off ratio gives the perception of changing intensity.

main:

 for b0 = 0 to 15

 b1 = 15 - b0

 low 0

 high 4

 pause b0

 high 0

 low 4

 pause b1

 next

 for b0 = 0 to 15

 b1 = 15 - b0

 low 0

 high 4

 pause b1

 high 0

 low 4

 12

 pause b0

 next

 goto main

 Why are there two for-next loops in the program?

 Change one of the outputs to the yellow LED and listen to the sound from the piezo
transducer. What does this tell you about program operation?

 What is the minimum frequency of the LEDs to minimise flickering?

 What are some applications that take advantage of persistence of vision?

7.13 CRICKET

When the pushbutton is pressed or the light level is low, the piezo transducer is
rapidly switched on and off causing a sound to be produced. The switching rate is

changed during each cycle.

main:

 readadc 1, b1

 if b1 <= 4 then cricket

 if pin3 = 1 then cricket

 goto main

cricket:

 for b0 = 0 to 32

 high 2

 pause b0

 low 2

 pause b0

 next

 goto main

 What is the effect of changing the values in the "for" statement (valid range 0 to
255)?

7.14 MUSIC USING PLAY COMMAND

When the pushbutton is pressed, a pre-programmed internal tune is played on the

piezo transducer.

main:

 if pin3 = 0 then main

 play 0, 3

 goto main

 In the "play" command, change first parameter from 0 to 1, 2, and then 3. What
changes?

 In the "play" command, change the second parameter from 3 to 0, 1 and then 2.

What changes?

7.15 MUSIC USING TUNE COMMAND

When the pushbutton is pressed, a tune is played on the piezo transducer.

 13

main:

 if pin3 = 0 then main

 tune 0,4,($EA,$C5,$43,$42,$40,$CA,$05,$43,$42,$40,$CA,$05,$43,$42,$43,$C0)

 goto main

Create a different tone sequence using the "Ring Tone Tunes" wizard in the Picaxe
editor.

7.16 TONE USING PWMOUT COMMAND

Using an internal PWM generator is used to create sound. Because the PWM operates

in the background, the program can do other tasks if required.

NOTE: The valid parameter range for the "PWMOUT wizard" is 3899Hz (pwmout 2,

255, x) to 14000Hz (approximate limit of hearing) (pwmout 2, 70, x), where x is the
second parameter multiplied by between 0 (0% duty cycle) and 4 (100% duty cycle).
(Refer to help for more detail.)

main:

 if pin3 = 0 then main

 for w0 = 255 to 70 step -1

 w1 = w0 * 2 'set up for approximately 50% duty cycle

 pwmout 2, w0, w1

 pause 10

 next

 pwmout 2, off

 goto main

 Change the program so that the sound goes from a high frequency to a low
frequency.

 Change the program so that the sound goes from a low frequency to a high

frequency and back to a low frequency.

7.17 SHOWER OR EGG TIMER

When the pushbutton is pressed, a timer is started. When the timing period has
elapsed, a tune is played. LEDs indicate the timer status. (For testing purposes, the

timing interval is set for 20 seconds – this can be changed as required.)

 low 0

 high 4

main:

 14

 if pin3 = 0 then main

 high 0

 for b0 = 1 to 20

 high 4

 pause 10

 low 4

 pause 990

 next

 low 0

 high 4

 tune 0,4,($EA,$C5,$43,$42,$40,$CA,$05,$43,$42,$40,$CA,$05,$43,$42,$43,$C0)

 goto main

 From the user's point of view, what are the functions of the red and green LEDs?
 Change the program to increase the potential timing period above 255 seconds.

 Change the timing period in the "for" command line to suit your application.

7.18 THEREMIN

The theremin is a musical instrument that can be played without touching it. This
version converts light intensity to frequency.

main:

 w0 = 0

 readadc 1, b0 'b1 is low byte of w0

 b0 = 255 - b0 'invert LDR reading

 w0 = w0 * 185 'convert LDR range to 255 - 70 = 185

 w0 = w0 / 256

 w0 = w0 + 70 'move base by 70

 w1 = w0 * 2 'set up for approximately 50% duty cycle

 pwmout 2, w0, w1

 pause 1n

 goto main

 What is the function of the "b0 = 256 – b0" command?

 What effect of deleting the pause statement?

7.19 COURTESY LIGHT

This program simulates the operation of a car's interior light. When the pushbutton is
pressed (door opened), the yellow LED (door light) is turned on. When the pushbutton
is released, the yellow LED stays on for a short time and then slowly fades off.

main:

 if pin3 = 0 then main

 high 2

buttonpressed:

 if pin3 = 1 then buttonpressed

 pause 2000

 for w0 = 1023 to 0 step -1

 pwmout 2, 100, w0

 pause 1

 if pin3 = 1 then exit

 next

 low 2

 pwmout 2, off

 low 2

 15

 goto main

 What is the function of the command "if pin3 = 0 then exit"?

 Change the program to use the green LED. Because the pwmout command will
only function on output 2, you will need to change the dimmer routine to use a
similar approach as used in "LED Dimmer". What changes are needed to make the

program work satisfactorily? (Hint: Use nested for-next loops and the "setfreq"
command.)

7.20 YOUR OWN PROJECT

Create and test your own application program using ideas presented in this section

and other sources. Some ideas are listed below:

 Create your own cyberpet with LED eyes, touch sensor, light level
detection, sound output and intelligence that you give to it. Use

insulated wires to relocate components inside a suitable toy. If
required, some Picaxe-08M2 pins can be reallocated to become

inputs or outputs.
 Create your own game. Use the LDR and switch as inputs, the LEDs

and/or piezo transducer as outputs. If required, some Picaxe-08M2

pins can be reallocated to become inputs or outputs.
 Change the input and/or output devices that are used in your

project. For example, outputs could be used to switch a lamp, a
motor or a solenoid. (For high current devices, such as these, you
will need to add some interface circuitry – refer to Picaxe

documentation.)

SECTION 8: HOW THE CIRCUIT WORKS (THEORY)

CIRCUIT DIAGRAM

8.1 CIRCUIT OVERVIEW

 PICAXE documentation refers to

"Input Pins" and "Output Pins",
which are not the same as the

physical pins on a device. To avoid
confusion, in this document "leg"
means a physical pin of an

integrated circuit and "pin" means
a logical input or output.

 A program can be downloaded into
the PICAXE-08M2 memory to
control the three LEDs and piezo

transducer in response to input
from the switch and/or the light

sensor (LDR).

8.2 ABOUT PICAXE MICROCONTROLLERS

 The PICAXE* is a type of IC (Integrated Circuit) called a microcontroller, which is
another name for a single chip computer. The PICAXE has similar features to a
normal PC: CPU (central processing unit), RAM (random access memory), ROM

(read only memory), I/O (input/output) lines, timers and A/D (analogue to digital)
converters.

* PICAXE is a trademark of Revolution Education Ltd.

 The Flash memory (EEPROM - Electrically Erasable Programmable Read Only
Memory) in a PICAXE allows it to be reprogrammed many times (typically

100,000). This means that you can develop a program and constantly check the
effects of changes.

 16

 A PICAXE program is created using an easy to learn version of the BASIC
programming language (our preferred method) or using flowcharting software.

 The PICAXE is supplied containing 'bootstrap' code that enables you to download

your program using the serial cable. Do not substitute the PICAXE with a blank PIC
microcontroller or any other integrated circuit.

8.3 PICAXE-08M2 (IC1)

 Leg 1 is connected to the positive terminal (+6V) of the power supply (batteries).

 Leg 2 is used only when transferring a program from a serial port on your PC to
the PICAXE. The 22k Ohm (R1) and 10k Ohm (R2) resistors must be present for
reliable operation.

 Leg 3 (pin4 in the program) is connected to the green LED.
 Leg 4 (pin3 in the program) is connected to the pushbutton switch.

 Leg 5 (pin2 in the program) is connected to the yellow LED and piezo tranducer.
 Leg 6 (pin1 in the program) is connected to the LDR to measure light intensity.
 Leg 7 (pin0 in the program) is connected to the red LED and is used during

program download.
 Leg 8 is connected to the negative terminal (0V) of the power supply (batteries).

8.4 POWER

 Power switch SW1 is used to control power to the circuit.

8.5 CAPACITORS

 Capacitor C1 filters the power supply close to the IC.

 Capacitor C2 reduces switch bounce from the pushbutton switch connected to leg
4.

8.6 PUSHBUTTON SWITCH

 The value of the pushbutton switch status is accessible using the variable "pin3".
When the pushbutton is released, 0V is present at leg 4 through 10k Ohm resistor

(R7). When the pressed, leg 4 is connected to positive. Capacitor (C2) across the
switch decreases electrical noise.

 If pressing the switch causes the PICAXE to reset (program starts from the
beginning), shorten the wires connecting the pushbutton to the printed circuit
board and/or remove capacitor C2.

8.7 LIGHT DEPENDANT RESISTOR (LDR)

 The LDR changes its resistance depending on the amount of light falling on the

sensor. The LDR and a 1k Ohm resistor (R3) form a voltage divider across the
battery. The voltage at the junction of the components connected to leg 5 and is

accessible using the "readadc" command.

8.8 LIGHT EMITTING DIODE (LED)

 A LED (L4), through 220 Ohm current limiting resistor (R8), indicates when power
is on.

 Three LEDs (L1, L2, L3) (red, yellow and green) are connected to the Picaxe-08M2

outputs via 220 Ohm resistors (R4, R5, R6). If required, the LED colours may be
swapped or changed.

8.9 PIEZO TRANSDUCER

 The piezo transducer is used to generate sound and may be switched on when

required.

